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Abstract. The symplectic quantization (Faddeev–Jackiw) method is reviewed briefly, and then it is applied
to the open strings in the D-brane background with a non-vanishing constant B-field. We shall work in
the discrete version, and the reduced phase space is obtained directly by solving the mixed boundary
conditions. The non-commutativity of coordinates along the D-brane is reproduced. Some ambiguities in
the previous papers could be avoided by this method.

1 Introduction

The concept of non-commutativity has a long history in
physics [1], and it has attracted much attention in the
past few years [2] owing to the inspiration of superstring
theories. Nowadays, it is widely believed that the open
strings attached to D-branes in the presence of a back-
ground B-field would induce non-commutativity in its end
points, i.e. along the D-brane’s world volume [3–5]. The
most conventional way to derive this non-commutativity
is to employ Dirac brackets [6], which were proposed by
Dirac more than half a century ago, and treat the mixed
boundary conditions (BCs) as primary constraints. How-
ever, such primary constraints have a different origin com-
pared to that of the traditional Dirac’s context in which
the primary constraints were introduced due to the sin-
gularity of the Lagrangian, so a proper treatment of the
BCs is needed.

Recently, there were some renewed discussions on this
subject [7,8], and some discrepancies appeared. One of
the focuses of these ambiguities is how to treat the mixed
BCs, as mentioned above; the BCs are not the primary
constraints in the standard Dirac’s context. In the [3,5,9],
these BCs were treated as primary Dirac constraints; sub-
sequently, an infinite set of secondary second class con-
straints could be obtained by the consistency requirements.
This is hard to understand, because the end points would
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live in a negative infinite-dimensional phase space, and
it is quite amazing that such circumstances rarely hap-
pened before. In a recent paper [7], the author announced
that if the BCs were treated as primary constraints, then
the Dirac method would not lead to an infinite set of sec-
ondary constraint chains but to a finite one; also, the non-
commutative algebras would not appear. So it is necessary
to discuss this problem in a different way.

Some attempts were made to avoid the discussion of
the constraints in [8,10]; there, the authors try to mod-
ify the symplectic structure, i.e, the Poisson brackets, to
avoid such problems. In [8] the authors find that there are
infinite possible results, and neither of them is superior to
the others.

In this paper, we shall analyze this problem in an alter-
native way; that is, we shall apply the so-called symplec-
tic quantization method (which was proposed by Faddeev
and Jackiw [11], therefore the FJ method for short) to
this problem [12]. The advantage of this method is that
one does not need know all the constraint chains by the
consistency requirements, and in the classification of the
constraints into the so-called primary or secondary ones,
the first class or the second class is not needed also, so the
ambiguities mentioned above could be avoided.

The organization of this paper is as follows. In Sect. 2,
we shall review the FJ method briefly; Sect. 3 is devoted to
an analysis of the open strings in constant background B-
field by using the FJ method, and finally, some conclusions
and discussions will be given in the last section.
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2 A brief review
of the Faddeev–Jackiw method

The Faddeev–Jackiw method [11] is an alternative to the
Dirac procedure to deal with constrained systems. Com-
pared to Dirac’s method, it can avoid the classification of
the constraints into the primary and secondary ones, and
first and second class ones, and gives us a simple way to
calculate the commutators. In this section, we shall out-
line this method briefly, and for the sake of simplicity, we
only focus on the systems which have a finite number of
degrees of freedom N ; the generalization to the field the-
ories is straightforward.

The starting point of the FJ method is the first-order
Lagrangian,

L(ξ, ξ̇) = ai(ξ)ξ̇i − H(ξ), i = 1, · · · , 2N. (1)

The variables ξi are defined as follows:

ξi = qi, i = 1, 2, · · · , N,

ξN+1 = pi. (2)

This first-order form Lagrangian is quite general, and the
Lagrangians which are of higher order in the time deriva-
tives can be rewritten in this form by introducing new
canonical variables. The Euler–Lagrange equations can be
obtained by the variation of (1):

∂L

∂ξi
− d

dt

∂L

∂ξ̇i
= 0, (3)

or, equivalently, by substituting (1) to the Euler–Lagrange
equation (3), it can also be written as

fij ξ̇
j =

∂

∂ξi
H, (4)

where fij = ∂
∂ξi

aj − ∂
∂ξj

ai is a 2N × 2N matrix.
In the case of the matrix fij not being degenerate, i.e,

f ij , the inverse of fij , exists, the ξi satisfy the evolution
equations

ξ̇i = f ij ∂

∂ξj
H. (5)

On the other hand, the evolution of the variables is deter-
mined by the Hamiltonian

ξ̇i = {ξi, H} = {ξi, ξj}∂H

∂ξj
, (6)

and comparing (5) and (6), the conclusion that the com-
mutation relations among the variables are given by f ij ,
i.e, the inverse of fij , can be drawn. The results can be fur-
ther simplified by the Darboux theorem. According to the
Darboux theorem, we can construct a coordinate trans-
formation ξi → Qi(ξ), so that the canonical one-form
ai(ξ)dξi in the Lagrangian (1) acquires the diagonal form

ai(ξ)dξi =
1
2
Qi(ξ)ωijdQj(ξ), (7)

where

ωij =

(
0 −I

I 0

)
ij

. (8)

The price for doing so is that the Hamiltonian in the new
variables Qi will be more complex generally.

In the case that the matrix fij is degenerate, the La-
grangian (1) is singular, which means that it describes
a constrained system. The Darboux theorem can still be
applied for the maximal 2n × 2n (of course n ≤ N) non-
degenerate subblock of fij , and the Lagrangian (1) trans-
formed as follows:

L(Qi, Q̇i, z) =
1
2
QiωijQ̇

j − Φ(Qi, z),

i, j = 1, · · · , 2n, (9)

where the zi are the 2N − 2n coordinates which are left
unchanged. Then, we apply the Euler–Lagrange equation
to the variables zi,

∂Φ

∂zi
= 0, (10)

to solve as many zi as possible in terms of the Qi. How-
ever, if the matrix ∂2Φ

∂zizj is singular, then we cannot solve
all the zi. Eliminating as many zi type variables as pos-
sible, we reach an expression which depends on the left z
type variables linearly. After this step is completed, the
Lagrangian (9) can be written as

L(Qi, Q̇i, z) =
1
2
QiωijQ̇

j − H(Qi) − λiΨ
i(Q), (11)

where we have renamed the remaining variables zi as λi.
From the above equation, we see that in fact the λi are
the Lagrange multipliers and the Ψ i(Q) are the real con-
straints, Ψ i(Q) = 0. Elimination should go on further by
solving the constraints Ψ i(Q) = 0 and then substituting
them in (11). A new Lagrangian L(η) = bi(η)η̇i − W (η)
will be gotten with a smaller number of variables. Then the
whole procedure should be repeated until a unconstrained
space, i.e, the reduced phase space and a Lagrangian like
(1) are obtained. Finally, the commutators among this set
of new variables can be read from the inverse of the matrix
f ′

ij = ∂bj

∂ηi − ∂bi

∂ηj .

3 The model

The action for an open string with its end points attached
on a D-brane in the presence of an NS B-field is (our
conventions are almost the same as [5])

S =
1

4πα′

∫
d2σ[gαβηµν∂αXµ∂βXν

+2πα′Bµνεαβ∂αXµ∂βXν ]

+
∫

dτAµ∂τXµ|σ=π −
∫

dτAµ∂τXµ|σ=0, (12)

where gαβ = diag(−, +), ε01 = −ε10 = 1, Bµν = −Bνµ,
ηµν = diag(−, +, · · · , +), and the length of the string is
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π. In the case of both end points attached on the same
D-brane, the last two terms can be written as

− 1
2πα′

∫
d2σFµνεαβ∂αXµ∂βXν

and the action (12) is

S =
1

4πα′

∫
d2σ[gαβηµν∂αXµ∂βXν

+2πα′Fµνεαβ∂αXµ∂βXν ], (13)

where F = B − F = B − dA, which is invariant under
both a U(1) gauge transformation, A → A + dλ, and the
so-called Λ translation, A → A+Λ, B → B+dΛ. Without
loss of any generality, we put the electric mixing F0µ =
Fµ0 = 0 [5], and for the sake of simplicity, we set 2πα′ = 1
and recover it when it is necessary.

The canonical momenta conjugate to the Xµ are

Pµ =
δS

δẊµ
= −∂τXµ + Fµν∂σXν . (14)

The variation of (13) gives both the equation of motion
and the mixed BCs, respectively,

(∂2
τ − ∂2

σ)Xµ = 0, (15)

(∂σXµ − Fµ
ν∂τXν)σ=0,π = 0. (16)

The BCs (16) can be written in terms of canonical vari-
ables Xµ and Pµ:

(Mµν∂σXν + Fµ
νPν)σ=0,π = 0. (17)

From the above BCs, we can see that it is inconsistent to
impose the Poisson brackets as usual,

{Xµ(τ, σ), Pν(τ, σ′)} = δµ
ν δ(σ − σ′),

{Xµ(τ, σ), Xν(τ, σ′)} = 0,

{Pµ(τ, σ), Pν(τ, σ′)} = 0. (18)

So a careful treatment of these BCs is needed. In [5,9,3],
the above BCs are treated as primary constraints, and the
Dirac methods were employed to derive the non-commu-
tative algebras. Because these BCs are only valid on the
D-brane’s world volume, some singularities just as δ(σ) or
δ(σ − π) (or even the derivatives of these terms) must be
introduced [4]. It is also a tedious task to find all the con-
straints and then calculate the Dirac brackets. In order to
avoid such singularities and the calculation of Dirac brack-
ets, we shall work in the discrete version, which means that
we discretize σ, and denote the steps by ε = π

N , so that
the continuum theory can be obtained by taking the limit
ε → 0 or N → ∞.

The action and the BCs in the discrete version are

S =
1
2

∫
dt
[
−εηµνẊµ

0 Ẋν
0 − εηµνẊµ

1 Ẋν
1 − · · ·

−εηµνẊµ
N−1Ẋ

ν
N−1 − εηµνẊµ

N Ẋν
N

+
1
ε
ηµν(X1 − X0)µ(X1 − X0)ν

+
1
ε
ηµν(X2 − X1)µ(X2 − X1)ν + · · ·

+
1
ε
ηµν(XN−1 − XN−2)µ(XN−1 − XN−2)ν

+
1
ε
ηµν(XN − XN−1)µ(XN − XN−1)ν

+2FµνẊµ
0 (X1 − X0)ν + 2FµνẊµ

1 (X2 − X1)ν + · · ·
+2FµνẊµ

N−1(XN−1 − XN−2)ν

+2FµνẊµ
N (XN − XN−1)ν

]
, (19)

1
ε
(X1 − X0)µ − Fµ

ν∂τXν
0 = 0, (20)

1
ε
(XN − XN−1)µ − Fµ

ν∂τXµ
N = 0. (21)

In fact, (20) and (21) are not only the BCs but also the
equations of motion of the end points X0 and XN in the
discrete form, and the equations of motion of the middle
points Xi, i �= 0, N in the discrete form are

ε∂2
τXµ

i =
1
ε
(Xi+1 − 2Xi + Xi−1)µ, i �= 0, N. (22)

Now there are two choices to proceed by. One is the tra-
ditional Dirac method. It takes the BCs (20) (or (21)) as
the Hamiltonian primary constraints [5,9] in which the La-
grange multipliers are introduced in order to construct the
so-called total Hamiltonian, and then it exhausts all the
constraint chains or determines the Lagrangian multipliers
by the consistency requirements; finally the commutation
relations can be obtained by calculating the Dirac brack-
ets. However, two new features beyond the standard Dirac
context would appear if we treat the BCs as the Dirac pri-
mary constraints [5,9]. One is that the Lagrange multipli-
ers are determined by the consistency requirements while
the constraint chains are not terminated. The other is that
the constraint chains are infinite. It is quite amazing that
such situations rarely occurred before, and it is also quite
suspect because the end points’ phase space would be of a
negative infinite dimension. In a recent paper [7], the au-
thor finds that in the Dirac context, if the BCs are treated
as the primary constraints, then the constraint chains are
not infinite but finite, and the non-commutative algebras
will not appear; furthermore, this author stresses that the
non-commutative algebras will not appear even if one in-
sists that the constraint chains are infinite. So in this pa-
per, we shall analyze this problem by using the FJ method.

According to the FJ [11] method reviewed in the pre-
vious section, it is necessary to find the reduced phase
space and re-express the action (19) in a first-order form
in this reduced phase space. Observing that the BCs (20)
and (21) are not very complicated, it is possible to obtain
the reduced phase space by solving them. In doing so, we
solve the BCs (20) and (21) and substitute them into the
Lagrangian (19), the reduced phase space1 is obtained and

1 After the first version of this paper was completed, we were
informed by Dr. Christian Grosche that the “reduced phase
space” has been discussed in [9]; however the meaning for these
authors is different from ours
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the action can be written as the first-order form,

S =
1
2

∫
dt[(F−1M)µν(X1 − X0)µẊν

0

+(F−1M)µν(XN − XN−1)µẊν
N + Lm], (23)

where M = 1 − F2, and Lm stands for the Lagrangian
which contains all the points except the points Xµ

0 , Xµ
N ,

Lm = −εηµνẊµ
1 Ẋν

1 − · · · − εηµνẊµ
N−1Ẋ

ν
N−1

+
1
ε
ηµν(X2 − X1)µ(X2 − X1)ν + · · ·

+
1
ε
ηµν(XN−1 − XN−2)µ(XN−1 − XN−2)ν

+2FµνẊµ
1 (X2 − X1)ν + · · ·

+2FµνẊµ
N−1(XN−1 − XN−2)ν . (24)

As there are no constraints on the variables Xµ
1 , Xµ

2 ,
· · · , Xµ

N−1, the Lagrangian Lm is treated in the standard
way, that is, we introduce the conjugate momenta Piµ to
Xµ

i (i = 1, 2, · · · , N − 1). These are defined as usual:

Piµ =
δS

δẊµ
i

= Fµν(Xi+1 − Xi)ν − εẊiµ, (25)

and the Hamiltonian corresponding to Lm is

Hm = P1µẊµ
1 + P2µẊµ

2 + · · · + P(N−1)µẊµ
N−1 − Lm

= − 1
2ε

P1µPµ
1 − 1

2ε
Mµν(X2 − X1)µ(X2 − X1)ν

+
1
ε
Pµ

1 Fµν(X2 − X1)ν

− 1
2ε

P2µPµ
2 − 1

2ε
Mµν(X3 − X2)µ(X3 − X2)ν

+
1
ε
Pµ

2 Fµν(X3 − X2)ν

+ · · · + · · · − 1
2ε

P(N−1)µ
Pµ

(N−1)

− 1
2ε

Mµν(XN−1 − XN−2)µ(XN−1 − XN−2)ν

+
1
ε
Pµ

N−1Fµν(XN−1 − XN−2)ν . (26)

Hence, the Lagrangian Lm is written in the first-order
form as

Lm = PiµẊµ
i − Hm, (27)

where the Hamiltonian Hm has been given in (26).
We have “translated” the action (19) into the first-

order form, which is necessary for the symplectic quanti-
zation,

S =
∫

dt

{
1
2
(F−1M)µν(X1 − X0)µẊν

0

+
1
2
(F−1M)µν(XN − XN−1)µẊν

N (28)

+P1µẊµ
1 + P2µẊµ

2 + · · · + P(N−1)µẊµ
N−1 − Hm

}
.

A set of symplectic variables,

ξµ
i =

(
Xµ

0 , Xµ
1 , Pµ

1 , Xµ
2 , Pµ

2 , · · · , Xµ
N−1, P

µ
N−1, X

µ
N

)
,

and the corresponding canonical one-form,

aiµ =( 1
2 (F−1M)νµ(X1 − X0)ν , P1µ, 0, P2µ, 0, · · · , Pµ

N−1, 0,

− 1
2 (F−1M)νµ(XN − XN−1)ν

)
,

can be read from the action (28). These result in the sym-
plectic two-form matrix f . We have

(fµν)ij =
∂(aν)j

∂(ξµ)i
− ∂(aµ)i

∂(ξν)j
. (29)

According to FJ, if the matrix f is not degenerate, then
the commutators can be read from its inverse directly. To
show how the FJ method works, for the sake of simplicity
and without loss of generality, we restrict ourselves to the
D2-brane [5], in this case µ, ν = 1, 2. After some simple
calculations, the explicit expression for the matrix f can
be obtained. We give the explicit expression of the matrix
here:

f =




A 0 0 0
0 0 −I 0
0 I 0 0
0 0 0 B


 , (30)

where A and B are 6 × 6 matrices, and the I stands for
the unitary matrix. We give the explicit expression for the
matrix A and B as follows:

A = (31)


0 − (F−1M)12
2πα′ 0 (F−1M)12

4πα′ 0 0
(F−1M)12

2πα′ 0 − (F−1M)12
4πα′ 0 0 0

0 (F−1M)12
4πα′ 0 0 −1 0

− (F−1M)12
4πα′ 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0




and

B = (32)


0 (F−1M)12
2πα′ 0 − (F−1M)12

4πα′ 0 0

− (F−1M)12
2πα′ 0 (F−1M)12

4πα′ 0 0 0

0 − (F−1M)12
4πα′ 0 0 −1 0

(F−1M)12
4πα′ 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0




.

Here we recover the coefficient 2πα′ explicitly. Obvi-
ously, f is not singular provided Fµν is non-vanishing,
hence the inverse of this matrix exists,

f−1 =




A−1 0 0 0
0 0 I 0
0 −I 0 0
0 0 0 B−1


 , (33)
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where A−1 and B−1 are the inverses of A and B, respec-
tively. For future use, we give them explicitly as follows:

A−1 = (34)



0 2πα′(M−1F)12 0 0 1
2 0

−2πα′(M−1F)12 0 0 0 0 1
2

0 0 0 0 1 0
0 0 0 0 0 1

− 1
2 0 −1 0 0

(M−1F)12
8πα′

0 − 1
2 0 −1 − (M−1F)12

8πα′ 0




and

B−1 = (35)



0 −2πα′(M−1F)12 0 0 1
2 0

2πα′(M−1F)12 0 0 0 0 1
2

0 0 0 0 1 0
0 0 0 0 0 1

− 1
2 0 −1 0 0 − (M−1F)12

8πα′
0 − 1

2 0 −1
(M−1F)12

8πα′ 0




.

From the above matrix f−1, we can read off the fol-
lowing relevant commutators:

{Xµ
0 , Xν

0 } = 2πα′(M−1F)µν ,

{Xµ
0 , Xν

1 } = 0,

{Xµ
1 , Xν

1 } = 0,

{Xµ
0 , P1ν} =

1
2
δµ
ν ,

{Xµ
1 , P1ν} = δµ

ν ,

{Xµ
N , Xν

N} = −2πα′(M−1F)µν ,

{Xµ
N , Xν

N−1} = 0,

{Xµ
N−1, Xν

N−1} = 0,

{Xµ
N , P(N−1)ν} =

1
2
δµ
ν ,

{Xµ
N−1, P(N−1)ν} = δµ

ν . (36)

The commutators for the variables Xµ
i , Pjµ (i, j �= 0, 1,

N, N − 1) are

{Xµ
i , Xν

j } = 0,

{Xµ
i , Pjν} = δijδ

µ
ν ,

{Piµ, Pjν} = 0. (37)

Our results mainly agree with that of [5,9], except for a
little difference: there, not only the end points, but also
the points which are neighboring to the end points (i.e.
Xµ

1 or Xµ
N−1) are non-commutative; these conflict with

the widely-held viewpoints that only the end points are
non-commutative.

4 Conclusions and remarks

In this paper, we use the symplectic quantization method
to the problem, the open string in the constant back-
ground B-field. In fact, it is a problem of how to treat the
BCs in both mechanics and field theories. Due to these
BCs, the systems cannot be quantized directly by the re-
placement { , }p → 1

i [ , ], because the fundamental

Poisson brackets {Qi, Pj} = δi
j or {Φi(x), Πj(x′)} = δi

jδ(x
− x′) conflict with the BCs on the boundary generally, so
a careful treatment of the BCs is needed. Previous work
on this subject has taken the BCs as the primary Dirac
constraints, and then the Dirac process was used. How-
ever, some confusions mentioned in the previous sections
would arise. Contrary to the Dirac method, those ambi-
guities could be avoided by using the FJ method. Because
the BCs are not very complicated, it is easy to solve them
and find the reduced phase space, so we are allowed to
work in this reduced phase space.

One may think that it is strange that in our final re-
sults the commutators of Xµ

0 and P1ν (or Xµ
N and P ν

N−1)
do not vanish. In fact, it is a common question one faces
in the discretization. It is well known that the symplectic
structure cannot be preserved as perfectly as its continu-
ous counterpart in general during the discretization. Re-
cently, some researches have been done toward solving this
problem, and one found that it is possible to preserve the
symplectic structure as good as its continuous counterpart
if the discretization is performed in the varied steps; this
problem deserves further discussion.
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